
Configuration in the Framework of Open Distributed Processingt

Andreas Vogel Gregor v. Bochmann Petre Dinis Andreas Polzes
vogel@ iro.umontreal.ca bochmann@iro.umontreal.ca dini@crim.ca polze@inf.fu-berlin.de

Universitk de Montrdal, Ddpartement d’ IRO
CP 6128, Succursale A

Montrkal, H3C 357, Canada

Abstract

Open Distributed Processing (ODP) is an ongoing
standardization activity by both I S 0 and CCITT providing
an object oriented reference model (RM ODP) for open
distributed systems. Certain abstraction levels called
viewpoints are introduced by the RM ODP

The formal description technique LOTOS is used to
define formal models for the computation and engineering
viewpoint by sublanguages LOTOScomp and LOTOSeng.
The use of these sublanguages as conjguration languages
on different abstraction levels is shown and illustrated by
an example: The mappability of LOTOS specifkation in
particular from the engineering viewpoint into implemen-
tations is outlined for the Object Space.

1. Introduction

Open distributed processing (ODP) is an ongoing stan-
dardization activity by both IS0 and CCITT providing a
object oriented reference model (RM ODP) for open dis-
tributed systems. The complexity of this kind of systems
is managed by introducing viewpoints. A viewpoint
means a certain abstraction of the system determined by a
particular interest. There are the five viewpoints enter-
prise, information, computational, engineering, and tech-
nology. An introduction is given in section 2.

Configuration aspects appear in the computational,
engineering, and technology viewpoint. Configuration
languages for the computational and engineering view-
point are defined as subsets of the formal description tech-
nique (FDT) LOTOS in section 3. LOTOS brings formal
semantics in the modeling process and provides
executable models.

t This work was supported by a grant from the Canadian
Institute for Telecommunication Research (CITR), under the
Networks of Centers of Excellence Program of the Canadian
Government.
$ P. Dini is with Centre de Recherche de Montreal and
A. Polze with Freie Universittit Berlin.

The Object Space allows processes on different nodes
of a network to exchange arbitrary objects. It relies on the
decoupled communication paradigm and is therefore well
suited for dynamic configuration of distributed applica-
tions in the context of open systems. We use Object
Space to implement our configuration scheme.

The addressing of configuration aspects in the ODP
framework and the application of LOTOS as configuration
language is discussed by a distributed multi-media exam-
ple in section 5. Section 5 concludes the paper.

2. Open Distributed Processing

Open Distributed Processing[4,6,7,5] (ODP) is an
ongoing standardization activity by both I S 0 and CCITT
providing a object oriented reference model for open dis-
tributed systems. The main concept is the viewpoint. A
viewpoint is focused on parts of an ODP system deter-
mined by a particular interest. The concepts, rules, and
structures appropriate for the specification of an ODP sys-
tem are given by a corresponding description language,
e.g. computational language for the computational view-
point. The semantics of ODP objects is defined by ODP
functions. With respect to configuration, the trading func-
tion comparable to a directory service and several trans-
parency function are of particular interest. The RM ODP
characterizes its five viewpoints as follows:

Enterprise viewpoint

the purpose, scope, and policies for the system.
The enterprise viewpoint on an ODP system focuses on

Information viewpoint
The information viewpoint on an ODP system focuses

on the semantics of information and information process-
ing activities in the system.

0-8186-5390-6/94 $3.00 0 1994 IEEE
106

mailto:polze@inf.fu-berlin.de

Computational viewpoint
The computational viewpoint on an ODP system

focuses on the functional decomposition of the system
into objects which are candidates for distribution.

Hence, the corresponding computational language
specifies the system in terms of communicating objects.
Computational objects are composed by interfaces. Inter-
action between computational objects is described by a
not further elaborated computational infrastructure. There
are three types of interfaces:
operational interface

provide operations. Invocation of an operation follows
the remote procedure paradigm.

is an operational interface providing only transactional
operations.

stream interface
support continuous media.
Operations and streams are syntactically defined by

Implicit and explicit binding between interfaces is con-

transactional interface

signatures, respectively.

sidered by the computational language.

Engineering viewpoint
The engineering viewpoint on an ODP system focuses

on the infrastructure required to support distribution. The
engineering language specifies architecture of this infras-
tructure in terms of
node

capsule

cluster

i s a resource management domain.

is the unit of allocation and encapsulation.

is the set of basic engineering objects, the unit of acti-
vation and deactivation.

represents a computational object.

coordinates processing, storage, and communications
functions using the resources of the corresponding
node.
The communication within this infrastructure is

expressed by
stub object

basic engineering object

nucleus object

acts as a basic engineering object’s representative to a
object in a different cluster.

maintains binding between interacting basic engineer-
ing objects.

protocol object
interacts with other protocol objects to achieve interac-
tion between basic engineering objects in different
clusters.

binder object

channel
is a configuration of stub, binder, protocol, and inter-
ceptor objects.

enables interactions to cross administrative and com-
munications domains.

interceptor

Technology viewpoint

on the on the choice of technology to support the system.
The technology viewpoint on an ODP system focuses

The trading function
The trading function provides means to advertise ser-

vices. It is realized by the trader. Service provider can
export their services. Potential service user can import
from the trader which means to get information on avail-
able service and their accessibility.

3. A formal modeling approach

A formal approach modeling the ODP description lan-
guages of the computation, and engineering viewpoint is
given[15,161 using the formal description technique
(FDT) LOTOS[10,3,2]. The general idea is to map the
concepts of the description languages on generic LOTOS
constructs also called templates. The modeling rules are
expressed by relationships between such LOTOS tem-
plates. Genericity in LOTOS is limited to the
parametrization of processes, hence a meta level is intro-
duced by the definition of LOTOS sublanguages. By such
a sublanguage, a generic model of a particular viewpoint
is defined containing the class of specification satisfying
the requirements of the corresponding ODP description
language.

This approach gives formal semantics to the ODP
modeling concepts and leads also to executable models.
These models provide the symbolic execution LOTOS
specifications supported by several tools.

4. The Object Space Approach

The Object Space approach supports communication
and synchronization between components of a distributed
application. All components get access to a shared asso-
ciative data store known as the Object Space. Every com-
ponent may write objects into the store which can subse-
quently be read by others. In order to read an object a
component presents a template which is matched against
the objects. If no matching object can be found within
Object Space then the read operation blocks. This way
objects may be passed from one component to another.
Object Space itself is implemented in a distributed

107

fashion, employing Object Space Manager processes in
different nodes of a network.

This style of communication is called decoupled. Nei-
ther does the sender of an object know its receiver nor
vice versa. If there exist several components trying to
read one object it is nondeterministic which of them will
succeed.

Decoupled communication is well suited for scalable
distributed computing within a network of workstations.
Object Space integrates coordination constructs (commu-
nication and synchronization) into the C++ language, thus
integrating Linda-like communication with object-
oriented essentials as inheritance, polymorphism and data
encapsulation.

5. Configuration of a distributed multi-
media application

A movie server - an in the nearer future upcoming
multi-media application intended to be supported by com-
munications, telecommunications, and computer industry
- is selected as case study. An informal specification of
this application containing beside the server itself also an
appropriate client. The application provides facilities to
playback movies on the clients site which are stored in
digital form on the servers site. The above described
modeling approach was applied to this case study[171.

movie server

Q binder trader

QQ
I computational infrastructure

figure 1: Computational model -
initial configuration

I

5.1. Computational Viewpoint

In the following certain configuration scenarios are dis-
cussed in the given framework. Instead of traces or trees
representing the execution of the specification by a simu-
lation tool[8] which require deeper understanding of
LOTOS and the tool, figures are given to illustrate the sys-

tem’s configurations. (Circuits describe computational
objects, T-bars stand for computational interfaces in fig-
ures 1 - 3.)

stream object

movie server movie client

1,

I computational infrastructure 1
1 figure 2: Computational model - scenario A

Figure I illustrates the initial structure of the system
from the computational viewpoint. There are instances of
the objects movie server, trader, binder (supporting
explicit binding), and the computational infrastructure.

movie client

movie server.

Q Q

- L A

I comvutational infrastructure I
~ ~ _ _ ~

figure 3: Computational model - scenario B

Figure 2 shows a scenario where a movie client has
been instantiated and explicitly bound to the movie server
by a stream object. To reach the scenario A from the ini-
tial configuration the following steps were executed:

108

!ode

I capsule I
node

capsule I

interceptor I
CLM: cluster manager
SOI: server operational interface
COI: client operational interface

CPM: capsule manager
SSI: server stream interface
CSI: client stream interface

figure 4: Engineering model - scenario A I
Instantiation of a movie client.
The movie client requests a stream connection from
the server, therefor
- the movie server instantiates a new stream inter-

face and
requests from the binder the instantiation of a
stream object. The binder returns the interface
identifier of the stream interface.

When the interface of the stream object are known to
the server and the client, these interfaces and the
stream interfaces of the client and the server are acti-
vated and data frames can be transmitted.

It is supposed that the movie server’s capacity is lim-
ited to support three clients. Hence a fourth client receives
a negative response from the server when asking for a
stream connection. Then the client can get information
from the trader about other available movie servers and an
interface reference. If the parameters of another movie
server seem to be suitable for the client, a stream connec-
tion can be established as shown above. Such a configura-
tion is shown in figure 3.

-

5.2. Engineering Viewpoint

From the engineering viewpoint, the situation is differ-
ent. Distribution of objects is explicitly visible. The units
of distribution are node, capsule, and cluster. Computa-
tional objects are mapped on basic engineering objects, in
this case each computational interface is represented by a
basic engineering object, e.g. server’s and client’s opera-
tional and stream interfaces in our case. Figure 4 illus-
trates the engineering viewpoint of the configuration
which was given in Figure 2 from the computational
viewpoint.

It is asumed that the server and the client are located
on different nodes. Within a node, there are by definition
of the engineering language a nucleus, i.e. the abstraction
of an operating system, a protocol object, and capsules. In
the configuration shown in figure 4, there are in each of
the nodes one instance of a capsule. A capsule contains
by its definition a capsule manager and a the cluster man-
ager of every instantiated cluster, stubs, binders, and clus-
ters. In our configuration, there is only one cluster in each

109

of the capsules containing an engineering operational and
a stream interface, respectively. Figure 4 also illustrates
an already established stream connection indicated by the
arrows.

5.3. Technology Viewpoint

We use the Object Space approach to distributed com-
puting for the implementation of our scenario as shown in
figure 4. Object Space relies on the concept of associa-
tively addressed objects in a shared dataspace. We want
to outline briefly how a distributed system may be config-
ured using stub, binder and protocol objects as mentioned
earlier on top of Object Space.

The stream-based communication between client and
server of our movie application uses a connection-
oriented transport protocol (e.g. TCP, ST 11). Prior to that
communication a binding between client and server has to
be performed. The stub objects shown in figure4 are
capable of transfering data between server and client once
a connection has been established. But when discussing
configuration aspect we have to focus on the binder
objects which allow a negotiation between client and
server prior to connection establishment.

Binder objects use Object Space communication to
establish a bonnection. A server offers its service by stor-
ing a special object in the Object Space. This object -
named as protocol object in figure4 - describes the
server (a unique ID), the name of the service offered and a
way to access the stub object (i.e. a network
address+port). If a server is capable of serving multiple
clients in paralle it simply stores several protocol objects
in Object Space.

Due to the associative addressing mechanism within
Object Space the binder of a client may easily retrieve a
matching protocol object from Object Space” (with the
operation in) if it knows the name of a service. So the
binder can figure out a server’s address and the stub object
may establish a connection.

Since the client removes the protocol object describing
the server’s interface from Object Space only one client
may successfully access a certain interface at one time.
After completion of all communication the server stores a
new protocol object in Object Space, thus indicating that
the service is available again. This provides for some reli-
ability after a communication breakdown - clients may
come and go without affecting the server’s behaviour.

Object Space is itself implemented in a distributed
fashion. It employs several Object Space Manager pro-
cesses on different nodes in a network. So Object Space
Manager processes are part of the nucleus as shown in
figure 4.

6. Conclusions

The shown approach to configuration is based on the
ODP framework and the use of the formal description
technique LOTOS. This leads to formal and executable
models of different abstraction levels determined by the
ODP viewpoints, computational and engineering.

The advantages of these approach are seen in
the formal and executable models and
a standardized modeling framework for open dis-
tributed systems.

The executable models provide the addressing of con-
figuration aspect already in early design stages and on dif-
ferent abstraction levels. The validation of intended con-
figurations of the systems is supported by tools executing,
e.g. simulating the models.

A similar modeling approaches is given with the
ANSA reference model[l] which is derived from the FUvi
ODP and Object Management Architecture (OMA)[121.
However, instead of using formal models, interface defini-
tion languages (IDL) are introduced. This leads canoni-
cally to compiler supported distributed implementations,
but they are lacking of a behaviour definition and are con-
sequently not executable on the model level. A similar
situation is described with the Darwin[ll] and the Sur-
geon[9] approaches.

A approach to transform LOTOS models into dis-
tributed implementations has been already presented[151.
This approach bases on a distributed, C++ based program-
ming environment called, Object Space[13,141, support-
ing decoupled communication between its components.
The further elaboration of ODP’s technology viewpoint
will lead to a deeper understanding of this question.

References
1.

‘The ANSA Reference Manual.,” Architecture Projects Man-
agement Limited, Cambridge (1989).

T. Bolognesi and E. Brinksma, “Introduction to the I S 0
Specification Language LOTOS.,” Computer Networks and
ISDN Systems, 14, pp. 25-59 (1987).

E. Brinksma, ‘Tutorial on LOTOS” i n The Formal Descrip-
tion Technique LOTOS, ed. P. van Eijk, C.A. Vissers, and M.
Diaz, pp. 171-194, Nort-Holland (1989).

CCIIT and ISOlIEC JTCl/SC 2 1 N G 7, “Information Tech-
nology - Basic Reference Model of Open Distributed Pro-
cessing - Part 1: Overview and Guide to Use,”
ISO/IEC/JTCl/SC21 N7053, Working Draft (July 1992).

3.

4.

110

5 .
CCITT and ISO/IEC JTCl/SC 21°C 7, “Information Tech-
nology - Basic Reference Model of Open Distributed Pro-
cessing - Part 5: Architectural Semantics,”
ISO/IEC/JTCl/SC21 N7056, Working Draft, May 1992.

CCI7T X.902 and IS0 CD 10746-2.2, “Information Technol-
ogy - Basic Reference Model of Open Distributed Processing
- Part 2: Descriptive Model,” ISO/IEC/JTCl/SC21 N7524,
Committee Draft (December 1992).

CCITT X.903 and IS0 CD 10746-3, “Information Technol-
ogy - Basic Reference Model of Open Distributed Processing
- Part 3: Prescriptive Model,” ISO/IEC/JTCl/SC21 N7525,
Committee Draft (December 1992).

H. Eertink and D. Wolz, “Symbolic Execution of LOTOS
Specifications” in Formal Description Techniques V ed. M.
Diaz and R. Groz, pp. 295-310, North-Holland (1993).

C. Hofmeister, E. White, and J. Purtilo, “Surgeo: a packager
for dynamically reconfigurable distributed applications,”
Sofhyare Engineering Journal, Volume 8 Number 2. pp.
95-101 (March 1993).

ISO, LOTOS - A formal description technique based on the
temporal ordering of observational behaviour (1 988).

6.

7.

8.

9.

10.

11.
J. Magee, N. Dulay, and J. Kramer, “Structuring parallel and
distributed programs,” Sojbvare Engineering Journal, Vol-
ume 8 Number 2, pp. 73-82 (March 1993).

OMG, “Object Management Architecture,” OMG Document.

A. Poke and A. Vogel, “Generierung verteilter Prototyp-
implementationen aus LOTOS-Spezifikationen nach dem
Object Space-Ansatz,” Report B-93-2, Freie Universitat
Berlin, Institut fur lnformatik (1993).

A. Polze, “The Object Space Approach: Decoupled Commu-
nication in C++” in Proceedings of TOOLS USA’93, Santa
Barbara (August 1993.).

A. Vogel, “Entwurf, Realisientng und Test von ODP-
Systemen auf der Grundlage formaler Beschreibungstech-
niken,” submitted as PhD thesis, Humboldt-Universitlit zu
Berlin (1993). in German.

A. Vogel, “On ODPs Architectural Semantics using LOTOS”
in Proceedings of the 1st International Conference on OD8
pp. 340-345, Berlin (1993).

A. Vogel, (ed.), “Project Overview, QoS Architecture, and
QoS Negotiation Protocol,” Project report, CITR project on
broadband services (Oct. 1993.).

12.

13.

14.

15.

16.

17.

111

